
05/15/2004

TrustedBSD: Trusted Operating
System Features for BSD
Robert Watson, Research Scientist

Host Intrusion Prevention Research Group

McAfee Research

McAfee Research

05/15/2004 Page 2

Introduction

 Introduction to TrustedBSD feature set
– Background: Trusted Operating Systems

• Feature sets of interest

• Role of assurance

– Evolution of the TrustedBSD Project

– Infrastructure to support security features

• Extended attributes, GEOM, ...

– Security features provided via TrustedBSD/FreeBSD

• ACLs, MAC, Audit, ...

– Experimental work to port feature set to Darwin/Mac OS
X

McAfee Research

05/15/2004 Page 3

Background: Trusted Operating
Systems
 Notions originated in security research and

development in the 1960's and 1970's
– Desire to support trustworthy and secure systems for

military (and later general government, banking, etc)

 Two dimensions of importance:
– Security feature set

– Assurance of correct security functionality

 Specifications play an important role
– 1980's-1990's: “Orange Book”

– 1990's-2000's: NIAP and Common Criteria

McAfee Research

05/15/2004 Page 4

Feature Set: Cx/CAPP

 “Common Access Protection Profile”
 Basic security functionality

– High level of trust in administrator, hardware

– Minimal coverage of network concepts

– Basic notions of users, authentication

– Separation of administrative role

– Discretionary protections via Access Control Lists (ACLs)

– Security event auditing

– Software life cycle process documentation

McAfee Research

05/15/2004 Page 5

Feature Set: Bx/LSPP

 “Labeled Security Protection Profile”
 Building on C2/CAPP

– Add mandatory protection, notions of role

• Typically Biba for integrity, MLS for confidentiality

– Enhanced security event auditing

 Systems frequently also ship with trusted
networking extensions

– CIPSO, MAC integration for IPsec

 Compartmented Mode Workstation (CMW)

McAfee Research

05/15/2004 Page 6

Assurance

 How can you provide assurance of security?
 Assurance arguments critical to trusted

systems
– Documentation of intent, assumptions of system

– Documentation that system architecture addresses intent

– Argument that system is correctly implemented

– Documentation of software development and
maintenance processes

 For lower levels, measured in inches of paper
 For higher levels, development and

architectural processes critical to success

McAfee Research

05/15/2004 Page 7

Evaluation Process: Common Criteria

 Select a target feature set (“protection profile”)
 Select a target assurance level (EALx)
 Contract to an evaluation lab

– Probably also someone to help with evidence generation

 Notes
– Narrow feature sets (cut down PP, context)

– Evaluation process is expensive, but critical to provide
software to some audiences (governments, etc).

– Becoming more important as required by more
consumers

– Interactions with open source beginning to be understood

McAfee Research

05/15/2004 Page 8

Security Infrastructure Features

 Additional infrastructure required
 Problem: cryptographic storage protection

– Solution: extensible storage framework (GEOM)

 Problem: access control lists and MAC require
storage

– Solution: extended attributes (UFS extattr, UFS2)

 Problem: diverse access control approaches
– Solution: centralized access control

McAfee Research

05/15/2004 Page 9

 Mobile computing requires the ability to
“revoke” data on mobile computing devices

– Lowest cost solution is a cryptographic transform

– Requires “insertion” of a transform in the storage stack

 Rather than implement a one-time transform,
provide transformation infrastructure

– GEOM allows “classes” to plug into the storage stack

• Also used for other services (RAID, partitioning, et al.)

– Cleanly separates storage producers and consumers

– Facilities new security R&D for storage

Infrastructure: GEOM

McAfee Research

05/15/2004 Page 10

Infrastructure: Extended Attributes

 New access control models frequently require
new meta-data for file system objects

– Access control lists require storage for list data

– Mandatory access control requires storage for label data

– Prevent work when adding more meta-data

 Extended attributes provide (name, value)
pairs

– Name is a character string; value is 0 or bytes of data

– No semantics for content implied

– Name spaces indicate protection (system, user)

– Can be consumed by the kernel or userspace

McAfee Research

05/15/2004 Page 11

Infrastructure: EAs on UFS1

 First generation implementation
– Doesn't modify on-disk layout – facilitates prototyping

– Allocates “backing files” by attribute name

– Contains array of attribute data indexed by inode #

– Requires explicit administrative configuration

– Administrator-defined bound on max data size

– Space reservation and efficiency are both issues

– Works well for fixed-size attributes

– Concurrency and locality issues for performance

McAfee Research

05/15/2004 Page 12

Infrastructure: EAs on UFS2

 Perform roll of on-disk layout version
– Add additional explicit storage for attributes in new layout

– Data referenced by inode, stored close to inode

– Uses normal UFS fragment/block mechanism, but
prepared for future use of UFS2 pseudo-extents

– Tighter integration with soft updates

 While there, also...
– Bump to 64-bit disk addressing

– New ABIs for system calls, et al

– Other misc. bits and pieces

McAfee Research

05/15/2004 Page 13

Infrastructure:
Centralized Access Control
 Review all kernel access control decisions
 Use explicit monitoring APIs rather than kmem
 Abstract “common” checks

– vnode access control

– Inter-process authorization (visibility, signals, debugging,
...)

 SMPng/KSE credential synchronization model
 Not a security feature “per se”

– However, critical to adding security features

McAfee Research

05/15/2004 Page 14

Security Features

 GBDE: Cryptographic Disk Protection
 POSIX.1e Access Control Lists (ACLs)
 OpenPAM
 NSS
 MAC Framework and policy modules
 SEBSD
 SEDarwin
 Audit

McAfee Research

05/15/2004 Page 15

GBDE: GEOM-Based Disk Encryption

 Storage encryption using key or random key
– Intended to be resilient to cryptographic attack

– Appropriate for use on notebooks, for swap devices, etc.

 Performed at block level, not file system level
 Created using GEOM class; once instance per

encrypted storage device
 Auto-configuring, subject to key availability
 Details covered in GBDE session yesterday.
 Implementation by Poul-Henning Kamp

McAfee Research

05/15/2004 Page 16

POSIX.1e Access Control Lists (ACLs)

 Enhanced “discretionary” access control
– Administrator/owners of objects control object protections

– Extension of permission model permits new entries

• Additional users, additional groups

• Mode compatibility through “mask” entry

 Based on POSIX.1eD17 draft standard
– Specification never finalized for a variety of reasons

 Model selected due to compatibility concerns
– On the whole, API-compatible with IRIX, Linux

– Semantics similar but syntax non-identical to Solaris

McAfee Research

05/15/2004 Page 17

OpenPAM

 Pluggable Authentication Modules (PAM)
 FreeBSD used linux-pam derivative
 Desire for fresh implementation

– More complete integration required

– XSSO standards compliance, Solaris compatibility

– Strong portability goals

– Security audit and review

– More complete set of modules

 OpenPAM integrated into FreeBSD 5.x

McAfee Research

05/15/2004 Page 18

NSS – Name Service Switch

 NSS permits directory services to be plugged
– Similar to PAM for password file, group file, etc

– Allows new directory services to be plugged in as
modules

• LDAP particularly of interest

– Requirement for extensibility so new database types and
databases can be added easily

– Current implementation uses shared libraries

• On-going work to support IPC to NSS daemon for caching,
reduced cost

 Integrated into FreeBSD 5.x

McAfee Research

05/15/2004 Page 19

MAC Framework and Policy Modules

 Addresses two requirements
– Mandatory Access Control (MAC) policies

– Extensible/flexible kernel policy mechanism

 Allows extension of kernel access control
model

– Policies encapsulated in kernel or loadable modules

• Compile-time, boot-time, and run-time extension

– Modules can instrument critical access decisions in
kernel

– Provides common infrastructure, such as labeling, APIs

– Automatic composition of multiple policies

– Many sample policy modules

McAfee Research

05/15/2004 Page 20

Rationale for Security Extensions

 Common FreeBSD deployment scenarios
– Banks, multi-user ISP environments

– Web-hosting cluster, firewalls

– “High-end embedded”

 Many of these scenarios have requirements
poorly addressed by traditional UNIX security

– OS hardening

– Mandatory protection

– Flexible, manageable, scalable protection

McAfee Research

05/15/2004 Page 21

Why a MAC Framework?

 Support required in operating system for new
security services

– Costs of locally maintaining security extensions are high

– Framework offers extensibility so that policies may be
enhanced without changing base operating system

 There does not appear to be one perfect
security model or policy

– Sites may have different security/performance trade-offs

– Sites may have special local requirements

– Third party and research products

McAfee Research

05/15/2004 Page 22

MAC Framework Background

 Extensible security framework
– Policies implemented as modules

– Common policy infrastructure like labeling

– Sample policy modules, such as Biba, MLS, TE,
hardening policies, et al.

– Composes multiple policies if present

– Also provides APIs for label-aware and possibly policy-
agnostic applications

 Shipped in FreeBSD 5.0 to 5.2, 5.2.1

McAfee Research

05/15/2004 Page 23

Kernel MAC Framework

User Process

User Process

User Process

...

S
ys

te
m

 C
al

l I
nt

er
fa

ce
VFS

Socket IPC

Process
Signalling

Pipe IPC

...
M

A
C

 F
ra

m
ew

or
k

mac_biba

mac_bsdextended

...

Sebsd

McAfee Research

05/15/2004 Page 24

Policy Entry Point Invocation
Policy-Agnostic Labeling Abstraction

M
A

C
 F

ra
m

ew
or

k

mac_biba

check file read?

EACCES

Destroy label

Init label

OK

Internalize
label

check relabelfile?

OKrelabel
Destroy label

1
label-1

2
label-2

3
label-3

jail
biba

jail
biba

jail
biba

biba/low

jail.a

biba/high

jail.b

biba/low

McAfee Research

05/15/2004 Page 25

Modifications to FreeBSD to Introduce
MAC Framework
 A variety of architectural cleanups

– Audit and minimize use of privilege

– Centralize inter-process access control

– Centralize discretionary access control for files

– Clean up System V IPC permission functions

– Prefer controlled and explicit export interfaces to kmem

– Combine *cred structures into ucred; adopt td_ucred

– Correct many semantic errors relating to credentials

– Support moves to kernel threading, fine-grained locking,
SMP

McAfee Research

05/15/2004 Page 26

Modifications to FreeBSD to add the
MAC Framework (cont)
 Infrastructure components

– Add support for extended attributes in UFS1; build UFS2

 Actual MAC Framework changes
– Instrument kernel objects for labeling, access control

– Instrument kernel objects for misc. life cycle events

– Create MAC Framework components (policy registration,
composition, label infrastructure, system calls, ...)

– Create sample policy modules

– Provide userspace tools to exercise new system calls

– Modify login mechanisms, user databases, etc.

McAfee Research

05/15/2004 Page 27

List of Labeled Objects

 Processes
– Process credential, process

 File System
– Mountpoint, vnode, devfs directory entries

 IPC
– Pipe IPC, System V IPC (SHM, Sem, Msg) , Posix IPC

 Networking
– Interface, mbuf, socket, Inet PCB, IP fragment queue,

Ipsec, security association

McAfee Research

05/15/2004 Page 28

Integration of MAC Framework
into FreeBSD

Process/
Thread
Support

System Call API/ABIs
Native, Linux, SVR4, OSF/1, PECOFF, ...

Scheduler

Process
Threaded Process

t t t t ...

VFS

UFS
...

GEOM Storage
Framework

Interface
Framework

File Interface

Socket IPC

Network
Protocols

Newbus, Device Drivers

devfs,
specfsPipe

IPCSysV
SHM

Virtual
Memory

SysV
msgq,
sem

McAfee Research

05/15/2004 Page 29

Where Next for the TrustedBSD MAC
Framework
 Continue to research and develop TrustedBSD

MAC Framework on FreeBSD
– Enhanced support for IPsec

– Improve productionability of policy modules

– Continued R&D for SEBSD

– Integrate with Audit functionality

McAfee Research

05/15/2004 Page 30

Sample Policy Modules

 mac_test regression test, stub, null modules
 Traditional labeled MAC policies

– Biba fixed-label integrity, LOMAC floating-label integrity

– Hierarchal and compartmented Multi-Level Security
(MLS)

– SELinux FLASK/TE “SEBSD”

 Hardening policies
– File system “firewall”

– Interface silencing

– Port ACLs

– User partitions

McAfee Research

05/15/2004 Page 31

SEBSD: Security-Enhanced BSD
Port of FLASK/TE from SELinux
 SELinux based on:

– NSA's FLASK architecture

• Developed on FLUX, a Mach/BSD microkernel

• Access control abstraction based on subjects, objects, sids

– Type Enforcement policy language

• Similar to Domain and Type Enforcement (DTE)

• Subjects assigned domains, objects types

• Rule language permits subject methods on objects

• Domain transitions occur on selected binaries

– Policy file determines nature and granularity of policy

McAfee Research

05/15/2004 Page 32

MAC Framework Modifications
Required for SEBSD
 Framework parallel to LSM in construction

– Similarity between LSM and MAC Framework simplify
implementation; differences simplify it further

 Provides stronger label manipulation and
management calls

– Don't need a number of the system call additions
required to run FLASK on Linux

 Removed notion of SID exposed to userspace
since mature APIs for labels already existed

– This approach later adopted in SELinux, also.

McAfee Research

05/15/2004 Page 33

Creating SEBSD Module from
Largely OS-Independent FLASK/TE

 At start
– SELinux tightly

integrated FLASK/TE
into Linux kernel

– Over course of SEBSD
work, similar
transformation was made
with LSM

 MAC Framework
plays similar role to
LSM for SEBSD

FLASK

TE

Linux
Kernel

LSM

FLASK

TE

FreeBSD
Kernel

MAC
Framework

SELinux SEBSD

McAfee Research

05/15/2004 Page 34

Current Status of SEBSD

 Kernel module “sebsd.ko” functional
– Most non-network objects labeled and enforced for most

interesting methods

– File descriptor, privilege adaptations of MAC Framework
complete

 Userspace experimental but usable
– Libsebsd port complete, ports of SELinux userland

programs completed as needed (checkpolicy, newrole,
...)

– Adapted policy allows many applications to run

• Few changes needed for third party applications, mostly
change required for base system components

McAfee Research

05/15/2004 Page 35

SEBSD: Implementation

 Fairly straight forward to port FLASK/TE
– FLASK/TE originally developed on BSD

– Encapsulated FLASK/TE into MAC Framework module

 Some enhancement to MAC Framework
– Requires labeling, access control for file descriptors

– Requires greater policy control over superuser privilege

– Required tighter integration into user space components

 In many ways easier on FreeBSD than Linux
– MAC Framework infrastructure critical (labels, APIs,

tools)

– FreeBSD locking much better defined

McAfee Research

05/15/2004 Page 36

SEDarwin: Security-Enhanced Darwin
Port of MAC Framework, SEBSD
 Currently experimental work

– Ported extended attributes, MAC Framework to XNU

– Ported SEBSD module and simple sample TE policy

– Modified some user space applications

– Explored applying mandatory protections to Mach

– Now porting other policies, improving maturity

 Many lessons learned concerning Darwin
– Build environment, architectural similarities and

differences, HFS+ issues, closed source pieces, working
with Apple, windowing systems, Mach, ...

McAfee Research

05/15/2004 Page 37

Security Event Auditing

 Fine-grained security event auditing
– Create a detailed audit log of security events

• Postmortem

• Intrusion detection

– Required by various security standards

• Including Orange Book, Common Criteria

 Detailed audit of result of many event classes
– Access to controlled objects (files, network, etc)

– Authentication events

– System configuration events

McAfee Research

05/15/2004 Page 38

Implementation Requirements

 Process properties (audit ID, session, ...)
 System calls to set properties on login
 System calls to configure audit support
 Instrument kernel events to generate audit trail
 System calls to submit user audit records
 Modifications to user applications (login, et al)
 Kernel record queue, queue limits, disk drain
 User databases and library
 Applications for printing, parsing, managing

McAfee Research

05/15/2004 Page 39

Audit Implementation

 McAfee Research implemented Audit on Mac
OS X/Darwin platform under contract

– Uses Solaris BSM API, user interfaces, trail format

 Currently porting implementation to FreeBSD
– Subject to code drops, licensing from Apple

 Hard problems to solve, however, include
– How to generate file paths to use in audit records for UFS

– Problems solved in HFS+ due to different name
properties

 Work in progress; 6.x/5.4 time frame

McAfee Research

05/15/2004 Page 40

Conclusion

 TrustedBSD Project active
– Steady stream of features applied to FreeBSD 4.x, 5.x,

and upcoming 6.x branches

– Some features quite mature (GEOM, UFS2, extended
attributes, OpenPAM, NSS, ACLs)

– Other features in the process of maturing (MAC
Framework, MAC policies)

– Others in early development (Audit)

 Information at http://www.TrustedBSD.org/
 Feel free to join lists, post messages, pitch in!

http://www.TrustedBSD.org/

