
Introduction to
TrustedBSD Audit + OpenBSM

Wayne Salamon
(wsalamon@freebsd.org)

Robert Watson
(rwatson@freebsd.org)

Introduction

• What is TrustedBSD?
• What is event auditing?
• CC + CAPP evaluation requirements
• The BSM audit format
• Kernel components
• MAC-Audit integration
• User space components
• Status and Availability

TrustedBSD Project

● Trusted system extensions to FreeBSD
– Announced April, 2000

● Security Infrastructure
– OpenPAM
– UFS2, Extended Attributes (EAs)
– Kernel access control centralization

● Security Functionality
– Access Control Lists (ACLs)
– Extensible kernel access control (MAC

Framework)
– Mandatory Access Control (MAC)
– Event Auditing, OpenBSM

What is event auditing?

● Non-bypassable audit log describing security
relevant events

● Security-relevant events
– Controlled operations
– Authentication related events
– Security management events

● Appropriate for many uses
– Post-mortem
– Intrusion detection
– Monitoring

● Typically, variable granularity: selection

Common Criteria and Audit

● Audit is mandated by common OS security
evaluations and standards
– CC – Common Criteria
– CAPP – Common Access Protection Profile
– EAL – Evaluation Assurance Level
– A variety of other more specific requirements

● CAPP identifies functional requirements
– Audit will provide comprehensive logging of

security events defined to be relevant to CAPP
– Typically security events identified as part of

evaluation process
– Reliability and robustness requirements also key

Excerpt of CAPP
Requirements Table

CAPP Requirements Table
CAPP Category Requirement Description
5.1.1.1 FAU_GEN.1 Audit Data Generation

5.1.1.2 FAU_GEN.1 Audit Data Generation

5.1.2.1 FAU_GEN.2 User Identity Association

5.1.3.1 FAU_SAR.1 Audit Review

5.1.3.2 FAU_SAR.1 Audit Review

5.1.4.1 FAU_SAR.2 Restricted Audit Review

5.1.5 FAU_SAR.3 Selectable Audit Review

The TSF shall be able to generate an audit
record of the auditable events listed in column
“Event” of Table 1 (Auditable Events). This
includes all auditable events for the basic level
of audit, except FIA_UID.1's user identity during
failures.
The TSF shall record within each audit record
at least the following information: (a) Data and
time of the event, type of the event, subject
identity, and the outcome (success or failure) of
the event; (b) additional information specified in
Table 1.
The TSF shall be able to associate each
auditable event with the identity of the user that
caused the event.
The TSF shall provide authorized
administrators with the capabiity to read all
audit information from the audit records.
The TSF shall provide the audit records in a
manner suitable for the user to interpret the
information.
The TSF shall prohibit all users read access to
the audit records, excet those users that have
been granted explicit read-access.
The TSF shall provide the ability to perform
selection of audit data based on the following
attributes: (a) user identity, (b) additional
attributes.

Auditing Basics

● Records describe subject action on object
– Subjects are either authenticated or non-

attributable
● Kernel events are mostly system calls

– Vast majority relate to Discretionary Access
Control (DAC)

– Wherever an access control decision is made, an
audit record may be cut

● User space programs also submit records
– If appropriately privileged to write to audit log

● Kernel writes to one active log at a time

Darwin Audit

● Darwin CAPP Audit
– McAfee Research under contract to Apple, Inc.
– In support of Mac OS X CAPP evaluation

● Open Source implementation of
– Darwin kernel event auditing
– Darwin user space event auditing
– Sun's Basic Security Module (BSM) file format

and APIs
– Various Darwin packages, including xnu, bsm, ...

● Under a combination of APSLv2, BSD
licenses

FreeBSD Audit

● TrustedBSD Project has ported Darwin Audit
to FreeBSD 6.x
– Currently in a development branch
– Initial merge anticipated in next few weeks
– FreeBSD 6.0 (experimental feature)
– FreeBSD 6.1 (production feature)

● OpenBSM
– Extraction, cleanup, enhancement of BSM

include files and libraries
– Intended to be vendor import for Darwin BSM
– Portable to other platforms including Linux,

Solaris, *BSD

BSM – Basic Security Module

● Sun's Basic Security Module (BSM)
– In Solaris, kernel components, etc.
– De facto audit API and file format standard

● Where possible, adopted API and file format
– Some extensions for Darwin events not present

in Solaris (etc)
● Permit reuse of applications, tools, docs

– For example, the BSM code in OpenSSH
● BSM defines a token-oriented record stream

– Extensible, easily parseable, flexible
– Consists of tokens and sets of tokens (records)

Audit File Stream Format

● Audit file streams consist of
– Audit file identifier token
– Stream of audit event records
– Audit file identifier token

● This permits logs to be combined while
maintaining log boundaries
– Files may be concatenated
– Files may be streamed

● Record consists of
– Series of typed tokens describing an event

Audit Record

 header trailerreturnsubjecttoken token token

arg token

pathname

path token

val

● Audit records consist of a series of tokens
– All records contain header, subject, return, trailer
– Additional tokens of various types contain event-

specific arguments
● Ie., path names, file attributes, signal numbers, etc.

Audit Records

● Header token contains event type,
timestamp, total length of record, etc.:
– header,98,1,open(2) - write,creat,trunc,0,Fri Jul 9

21:43:59 2004, + 15 msec

● Subject token contains user IDs, invariant
audit ID, PID, session ID, terminal info:
– subject,audit,root,audit,wsalamon,audit,752,751,67108866

,0.0.0.0

● Return token contains system call
success/failure and return value:
– return,success,3

● Two object tokens for a file in same record:
– path,/private/var/run/utmp
– attribute,100644,root,daemon,234881029,0,0

Audit Selection

● CAPP (and practicality) require the ability to
select audit records
– Must be able to audit all security-relevant events
– Doesn't mean you (end-user) want to

● TrustedBSD Audit follows Solaris model
– Pre-selection occurs early in system call to

decide if a record may be required
– Post-selection occurs at the end of the system

call to decide if record was required
● Event masks are associated with each

process, evaluated twice for each event
● Reduction tools also available

Audit Events & Classes

● Kernel audit events are associated with
system calls

● Audit classes are used to manage classes of
related audit events

● Events are mapped to 1..n classes
– Mapping is configured by control files
– Loaded into kernel by audit daemon
– Event classes include “file read”, “file write”, ...,

“network”, ... “System V IPC”, ... “exec”, ...
● Processes have associated class masks for

success and failure

Audit Components

● Kernel components
– Audit system calls, event management, logging,

etc.
● Audit daemon

– Configures audit system parameters, manage
audit log rotation, send warnings

● BSM library
– APIs for creating and parsing audit records

● Tools to display, reduce the audit log
● Modifications to login, passwd, etc, to audit

user space events of interest

FreeBSD Kernel Changes

● Imported Darwin 7.x kernel audit code
– Mach portions removed

● Modified syscall.master files to include audit
event associated with system call

● System calls instrumented to collect
argument information

● Use special file instead of Mach messages to
communicate with user space audit daemon

Kernel Flow Diagram

p
Process

syscall
(arg1 ... argn)

audit_syscall_enter

system call

audit_syscall_exit

Preselection of auditing based
on process event masks

Args, object info stored into
internal kernel audit record

Postselection based on event
masks, syscall success/failure

audit_commit
Place internal record on
audit queue; may wait on CV
if above high water mark

The audit worker kernel
thread is awoken

cv_signal

Audit Worker Kernel Task

TAILQ_REMOVE

Remove the audit record from
the kernel queue

Q Empty? cv_wait
Y

N

audit_record_write

Will check log and file system
full, send trigger to userspace

kaudit_to_bsm
Convert the internal audit
record to BSM format

vn_rdwr Write the audit record

Audit Record Generation

● On system call entry, if pre-selection
succeeds, kernel audit record is allocated on
thread
– Preselection based on audit masks associated

with the process and class of event
● System call stores parameters, object info

into kernel audit record
● On system call exit, post-selection decides

whether to commit audit record
– Based on result of call (success/failure) and

process selection mask

Audit Record Generation cont.

● Checks made, triggers sent if:
– Filesystem free space falls below configured limit
– Filesystem full
– Audit log size over configurable maximum

● Kernel audit records converted to BSM
format before writing

● Tokens are generated for the audit record
based on type of record

● Header, subject, and trailer tokens added
● Audit record written

MAC/Audit Integration

● The Audit system will pull subject/object
labels from the policies when storing other
subject/object information for auditing
– A new interface in the MAC framework for

policies to return audit-specific labels
– Policies can also push ancillary data to the Audit

system for inclusion in the currently audited
system call using mac_audit_text()

● Audit information is placed in text tokens
within the audit record

Audit Daemon

● Audit daemon loads the event->class
mapping into kernel on startup

● Sets audit configuration parameters in kernel
● Manages audit start, suspension, and

termination
● Is also responsible for audit log rotation and

generating warnings
● Receives triggers from the kernel via the
dev/audit special file

BSM Library

● BSM library ported with minimal changes
● Provides an API for generating BSM tokens

and audit records
– That can then be included in the audit trail via

the audit() system call
● API for parsing an audit trail and presenting

the information in human-readable form
● The OpenBSM project has been created to

centralize changes to BSM library
● www.openbsm.org

Audit Tools

● The audit log can be examined by using tools
ported from Darwin:
– auditreduce: Select records from audit log

based on user ID, date, event, etc.
– praudit: Present audit records in human-

readable form
● Example:

– auditreduce -m AUE_OPEN_WC
/var/audit/20040710003835.20040710014658 | praudit

● Should be compatible with existing BSM
tools

Cool OpenBSM Logo by
Jennifer Dodd

Status and Availability

● Most of the core kernel components are in a
TrustedBSD branch

● BSM library and audit reduction tools ported
● Audit daemon ported
● Several system calls audited
● Investigate defining new audit tokens for

MAC auditing needs
● First public drop of OpenBSM available in the

next few days
– http://www.OpenBSM.org/
– http://www.TrustedBSD.org/

Future Directions

● Further MAC/Audit integration
● Complete system call coverage
● Complete login/userland audit events
● Remove interim kernel audit record and use

BSM token format throughout
● Performance analysis
● Test, test, test
● Produce OpenBSM 1.0 release
● Merge to FreeBSD CVS

