
FreeBSD SMPng Project
SMP Network Stack

Robert Watson
FreeBSD Core Team

rwatson@FreeBSD.org

Principal Research Scientist
McAfee Research (?)

rwatson@nailabs.com (?)

Introduction

● Background
– Symmetric Multi-Processing (SMP)
– Strategies for SMP-capable operating systems

● SMPng
– FreeBSD 3.x/4.x SMP
– SMPng architecture

● Network Stack
– Architecture
– Synchronization approaches
– Optimization approaches

Multi-Processing (MP) and
Symmetric Multi-Processing (SMP)

● Interested in “mostly” SMP
– More than one general purpose processor
– Running the same primary system OS
– Increase available CPU capacity sharing

memory/IO resources
● “Symmetric”

– Refers to memory performance and caching
– In contrast to NUMA

● Non-Uniform Memory Access
● In practice, the world is complicated

– Amd64 NUMA, dual core, etc.
– Intel HTT, dual core, etc.

Simplified SMP Diagram
Intel Quad Xeon

CPU0 CPU1 CPU2 CPU3

Northbridge

System Memory

CPU0 Cache CPU3 CacheCPU2 CacheCPU1 Cache

Simplified NUMA Diagram
Quad AMD Opteron

CPU0 CPU1 CPU2 CPU3

HT Crossbar / Bus

CPU3
Memory

CPU2
Memory

CPU1
Memory

CPU0
Memory

CPU0 Cache CPU3 CacheCPU2 CacheCPU1 Cache

Not SMPng: Graphics
Processing Units (GPUs)

CPU0 CPU1 CPU2 CPU3

Northbridge

System Memory

CPU0 Cache CPU3 CacheCPU2 CacheCPU1 Cache

AGP Bus GPU

Not SMPng: Loosely Connected
Computation Clusters

Interconnect Switch

CPU0 CPU1 CPU2 CPU3

Northbridge

System Memory

CPU0 Cache CPU3 CacheCPU2 CacheCPU1 Cache

PCI-X Bus

Interconnect
Card

CPU0CPU1CPU2CPU3

Northbridge

System Memory

CPU0 CacheCPU3 Cache CPU2 Cache CPU1 Cache

PCI-X Bus

Interconnect
Card

What is shared in an
SMP System?

● Sources of asymmetry
– Hyper-threading (HTT): physical CPU cores

share computation resources and caches
– Non-Uniform Memory Access (NUMA): different

CPUs may access memory at different speeds

Not SharedShared

CPU (register context, TLB, ...)
Cache

Local APIC timer
...

System memory
PCI buses

I/O channels
...

What is an MP-Capable OS?

● An OS is MP-capable if it is able to operate
correctly on MP systems
– This could mean a lot of different things to a lot

of different people
– Usually implies it is able to utilize >1 CPU

● Common approach is Single System Image
– “Look like a single-processor system”
– But be faster

● Other models are possible
– Most carefully select variables to degrade
– Weak memory models, message passing, ...

OS Approach:
Single System Image (SSI)

● To the extent possible, maintain the
appearance of a single-processor system
– Only with more CPU power

● Maintain current UNIX process model
– Offer parallelism between user processes
– Use threads as expression of single process

parallelism
– Requires minimal changes to applications yet

offer significant performance benefit
● Because the APIs and services weren't

designed for MP, has some challenges

Definition of Success

● Goal is performance
– Why else buy more CPUs?
– However, performance is a nebulous concept
– Very specific to workload

● “Speed up”
– Measurement of workload performance as

number of CPUs increase
– Ratio of score on N processors to score on 1

● Two goals for the OS
– Don't get in the way of application speed-up
– Facilitate application speed-up

“Speed-Up”

● “Idealized”
performance

● Not realistic
– OS + application

synchronization
overhead

– Limits on workload
parallelism

– Contention on
shared resources,
such as I/O + bus

UP SM
P-1

SM
P-2

SM
P-3

SM
P-4

0

5000

10000

15000

20000

25000

30000

35000

40000

Speed-Up: MySQL Select
Query Micro-Benchmark

Idealized

Predicted
linear from

Measured

Configuration

T
ra

ns
ac

tio
ns

/S
ec

on
d

Developing an SMP
UNIX System

● Two easy steps
– Make it run
– Make it run fast

● Well, maybe a little more complicated
– Start with the kernel
– Then work on the applications
– Then repeat until done

Issues relating to MP for UNIX
Operating Systems: Kernel

● Bootstrapping
● Inter-processor communication
● Expression of parallelism
● Data structure consistency
● Programming models
● Resource management
● Scheduling work
● Performance

Issues relating to MP for UNIX
Operating Systems: Apps

● Application must be able use parallelism
– OS must provide primitives to support parallel

execution
● Processes, threads

– OS may do little, some, or lots of the work
● Network stack
● File system

– An MP-capable and MP-optimized thread library
is very important

● System libraries and services may need a lot
of work to work well with threads

Bootstrapping

● Not all that interesting
● The boot strap processor (BSP) starts up like

any UP system
● The kernel “discovers” other CPUs
● Once sufficiently initialized, the kernel starts

the additional processors (APs)

Inter-Processor Communication

● Inter-Processor Interrupts (IPI)
– Wake up processor at boot time
– Cause a processor to enter an interrupt handler
– Comes with challenges, such as deadlocks

● Shared Memory
– Kernel memory will generally be mapped

identically when the kernel executes on
processors

– Memory is therefore shared, and can be read or
written from any processor

– Requires consistency and synchronization model
– Atomic operations, higher level primitives, etc.

Expression of Parallelism

● Kernel will run on multiple processors
– Most kernels have a notion of threads similar to

user application threads
– Multiple execution contexts in a single kernel

address space
– Threads will execute on only one CPU at a time
– All execution in a thread is serialized with

respect to itself
– Most systems support migration of threads

between processors
– When to migrate is a design choice affecting

load balancing and synchronization

Data Consistency

● Some kernel data structures will be accessed
from more than one thread at a time
– Will become corrupted unless access is

synchronized
– “Race Conditions”

● Low level primitives are usually mapped into
higher level programming services
– From atomic operations and IPIs
– To mutexes, semaphores, signals, locks, ...
– Lockless queues and other lockless structures

● Choice of model is very important
– Affects performance and complexity

Data Consistency:
Giant Lock Kernels

● Giant Lock Kernels (FreeBSD 3.x, 4.x)
– Easiest way to get a UP system to run on MP

hardware
– Restore the assumption that the kernel runs on a

single CPU at a time
– Processors spin if waiting for the kernel
– User processes or threads may run on more than

one CPU at a time
– Only one can enter the kernel at a time

● Easy to implement, but lots of “contention”
– Synchronization costs are high
– CPU is burned waiting for the kernel

Context Switching in a
Giant-Locked Kernel

CPU0

CPU1

Executing in kernel

Waiting on Giant

Running in user space

Idle

read()
Sleep
on I/O

read()
returns

socket()
Giant

acquired

I/O
completes

Giant
acquired

CPUs spinning waiting
for Giant to be released

by the other CPU

socket()
returns

The Problem: Giant Contention

● Contention in a Giant lock kernel occurs
when events on multiple CPUs compete to
enter the kernel
– User threads performing system calls
– Interrupt or timer driver kernel activity

● Occurs for workloads using kernel services
– File system activity
– Network activity
– Misc. I/O activity
– Inter-Process Communication (IPC)
– Scheduler and context switches

● Also affects UP by limiting preemption

Addressing Contention:
Fine-Grained Locking

● Decompose the Giant lock into a series of
smaller locks that contend less
– Typically over “code” or “data”
– E.g., scheduler lock permits user context

switching without waiting on the file system
– Details vary greatly by OS

● Iterative approach
– Typically begin with scheduler lock
– Dependency locking such as memory allocation
– Some high level subsystem locks
– Then data-based locking
– Drive granularity based on observed contention

Context Switching in a
Finely Locked Kernel

CPU0

CPU1

Executing in kernel

Waiting on mutex

Running in user space

Idle

read()
Sleep
on I/O

read()
returns

socket()

I/O
completes

Socket buffer mutex
briefly in contention

socket()
returns

send()

send()
Wait on
mutex

Mutex
acquired

FreeBSD SMPng Project

● SMPng work began in 2001
– Present in FreeBSD 5.x, 6.x

● Several architectural goals
– Adopt more threaded architecture

● Threads represent possible parallelism
● Permit interrupts to execute as threads

– Introduce various synchronization primitives
● Mutexes, SX locks, rw locks, semaphores, CV's

– Iteratively lock subsystems and slide Giant off
the kernel

● Start with common dependencies
– Synchronization, scheduling, memory allocation,

timer events, ...

FreeBSD Kernel

● Several million lines of code
● Many complex subsystems

– Memory allocation, VM, VFS, network stack,
System V IPC, POSIX IPC, ...

● FreeBSD 5.x
– Most major subsystems except VFS and some

drivers execute Giant-free
– Some network protocols require Giant

● FreeBSD 6.x
– VFS also executes Giant-free, although most file

systems are not

Network Stack Components

● Over 400,000 lines of code
– Excluding distributed file systems and device

drivers
● Several significant components

– “mbuf” memory allocator
– Network device drivers
– Net* protocols layer

● Includes IPv4, IPv6, IPX, EtherTalk, ATM
– Sockets and socket buffers
– Netgraph extension framework

FreeBSD Network Stack
Components

Sockets

Protocols

Mbuf Allocator

Network Interfaces netisr routing

Network Device Drivers

Sample Data Flow
TCP Send and Receive

kern_send()

sosend()
sbappend()

tcp_send()
tcp_output()

ip_output()

em_start() em_intr()

ether_input()ether_output()

ip_input()

tcp_reass()
tcp_input()

soreceive()
sbappend()

kern_recv()

System call
and socket

Link Layer

IP

TCP

Network Stack Threading
UDP Transmit

netblast

em0 ithread

em_start()

send()
returns

em_intr()
preempts

sosend() udp_output()

ip_output()

em_clean_transmit_intr()

em_intr()
returns

send()

Network Stack Threading
UDP Receive

netreceive

netisr

em0 ithread

recv()
recv()
returns

em_intr()
preempts

schednetisr() swi_net()

soreceive()

udp_input()
netreceive

blocks

ether_input()

em_intr()
returns

ip_input()

idle

em_process_receive_interrupts()

sbappend()
sowakeup()

netreceive
wakes up

Network Stack Concerns

● Overhead: Per-packet costs
– Network stacks may process millions of PPS
– Small costs add up quickly if per-packet

● Ordering
– TCP is very sensitive to mis-ordering, due to fast

retransmit behavior
● Optimizations may conflict

– Optimizing for latency may damage throughput,
and vice versa

● When using locks, ordering is important
– Lock orders prevent deadlock
– Data passes in various directions through layers

Locking Strategy

● Lock data structures
– Don't use finer locks than required by UNIX API
– I.e., parallel send and receive on the same

socket is useful, but not parallel send on the
same socket

– Lock references to in-flight packets, not packets
themselves

● Lock orders
– Protocol drives most inter-layer activity
– Acquire protocol locks before driver locks
– Acquire protocol locks before socket locks

Network Stack Parallelism

● Network stack was already threaded in 4.x
– 5.x/6.x add ithreads

● Assignment of work to threads
– Threads involved are typically user threads,

netisr, and ithreads
– Work split over many threads for receive
– On transmit, work tends to occur in one thread
– Opportunities for parallelism in receive are

greater than in transmit for a single user thread

Approach to Increasing
Parallelism

● Starting point
– Assume a Giant-free network stack
– Select an interesting workload
– What are remaining source of contention?
– Where is CPU-intensive activity serialized in a

single thread – i.e., unbalanced CPU use?
● Identify natural boundaries in processing

– Protocol hand-offs, layer hand-offs, etc
– Carefully consider ordering considerations

● Weigh trade-offs
– Context switches are expensive
– Locks can be expensive

Challenge: Mitigating Locking
Overhead

● Amortize cost of locking
– Avoid multiple lock operations where possible
– Amortize cost of locking over multiple packets

● Coalesce/reduce number of locks
– Excessive granularity will increase overhead
– Combining across layers can avoid lock

operations necessitated by to lock order
● Serialization “by thread”

– Execution of threads is serialized
● Serialization “by CPU”

– Use of per-CPU data structures and
pinning/critical sections

Challenge: Maintaining
Ordering

● Ordering of packets is critical to performance
– TCP will misinterpret reordering as requiring fast

retransmit
● Ordering constraints must be maintained

across dispatch from multiple sources
– I.e., packets sourced from a single network

interface should be processed “in order”
● Carefully select an ordering

– “Source ordering” is used widely in the stack
– Weakening ordering can improve performance
– Some forms of parallelism maintain ordering

more easily than others

Status of SMPng Network Stack

● FreeBSD 5.x and 6.x largely run the network
stack without Giant
– Some less mainstream components still need it

● From “Make it work” to “Make it work fast!”
– Many workloads show significant improvements:

databases, multi-thread/process TCP use, ...
– Cost of locking hampers per-packet performance

for specific workloads: forwarding/bridging PPS
– UP performance sometimes sub-optimal
– Of course, 4.x is the gold standard...

● Active work on performance measurement
and optimization currently

Summary

● A lightning fast tour of MP
– Multi-processor system architectures
– Operating system interactions with MP
– SMPng architecture and primitives

● And the network stack on MP
– The FreeBSD network stack
– Changes made to the network stack to the

network stack to allow it to run multi-threaded
– Optimization concerns including locking cost and

increasing parallelism
– Concerns such as packet ordering

Conclusion

● SMPng is present in FreeBSD 5.x, 6.x
– 5.3-RELEASE the first release with Giant off the

network stack by default
– Upcoming 5.4-RELEASE includes substantial

optimizations, stability improvements, ...
– 6.x will include substantial optimizations, VFS, ...

● Some URLs:

http://www.FreeBSD.org/
http://www.FreeBSD.org/projects/netperf/
http://www.watson.org/~robert/freebsd/netperf/

