
FreeBSD SMPng Project
SMP Network Stack

Robert Watson
FreeBSD Core Team

rwatson@FreeBSD.org

Principal Research Scientist
McAfee Research (?)

rwatson@nailabs.com (?)



Introduction

● Background
– Symmetric Multi-Processing (SMP)
– Strategies for SMP-capable operating systems

● SMPng
– FreeBSD 3.x/4.x SMP
– SMPng architecture

● Network Stack
– Architecture
– Synchronization approaches
– Optimization approaches



Multi-Processing (MP) and
Symmetric Multi-Processing (SMP)

● Interested in “mostly” SMP
– More than one general purpose processor
– Running the same primary system OS
– Increase available CPU capacity sharing 

memory/IO resources
● “Symmetric”

– Refers to memory performance and caching
– In contrast to NUMA

● Non-Uniform Memory Access
● In practice, the world is complicated

– Amd64 NUMA, dual core, etc.
– Intel HTT, dual core, etc.



Simplified SMP Diagram
Intel Quad Xeon
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Simplified NUMA Diagram
Quad AMD Opteron
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Not SMPng: Graphics
Processing Units (GPUs)
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Not SMPng: Loosely Connected 
Computation Clusters
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What is shared in an
SMP System?

● Sources of asymmetry
– Hyper-threading (HTT): physical CPU cores 

share computation resources and caches
– Non-Uniform Memory Access (NUMA): different 

CPUs may access memory at different speeds

Not SharedShared

CPU (register context, TLB, ...)
Cache

Local APIC timer
...

System memory
PCI buses

I/O channels
...



What is an MP-Capable OS?

● An  OS is MP-capable if it is able to operate 
correctly on MP systems
– This could mean a lot of different things to a lot 

of different people
– Usually implies it is able to utilize >1 CPU

● Common approach is Single System Image
– “Look like a single-processor system”
– But be faster

● Other models are possible
– Most carefully select variables to degrade
– Weak memory models, message passing, ...



OS Approach:
Single System Image (SSI)

● To the extent possible, maintain the 
appearance of a single-processor system
– Only with more CPU power

● Maintain current UNIX process model
– Offer parallelism between user processes
– Use threads as expression of single process 

parallelism
– Requires minimal changes to applications yet 

offer significant performance benefit
● Because the APIs and services weren't 

designed for MP, has some challenges



Definition of Success

● Goal is performance 
– Why else buy more CPUs?
– However, performance is a nebulous concept
– Very specific to workload

● “Speed up”
– Measurement of workload performance as 

number of CPUs increase
– Ratio of score on N processors to score on 1

● Two goals for the OS
– Don't get in the way of application speed-up
– Facilitate application speed-up



“Speed-Up”

● “Idealized” 
performance

● Not realistic
– OS + application 

synchronization 
overhead

– Limits on workload 
parallelism

– Contention on 
shared resources, 
such as I/O + bus
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Developing an SMP
UNIX System

● Two easy steps
– Make it run
– Make it run fast

● Well, maybe a little more complicated
– Start with the kernel
– Then work on the applications
– Then repeat until done



Issues relating to MP for UNIX 
Operating Systems: Kernel

● Bootstrapping
● Inter-processor communication
● Expression of parallelism
● Data structure consistency
● Programming models
● Resource management
● Scheduling work
● Performance



Issues relating to MP for UNIX 
Operating Systems: Apps

● Application must be able use parallelism
– OS must provide primitives to support parallel 

execution
● Processes, threads

– OS may do little, some, or lots of the work
● Network stack
● File system

– An MP-capable and MP-optimized thread library 
is very important

● System libraries and services may need a lot 
of work to work well with threads



Bootstrapping

● Not all that interesting
● The boot strap processor (BSP) starts up like 

any UP system
● The kernel “discovers” other CPUs
● Once sufficiently initialized, the kernel starts 

the additional processors (APs)



Inter-Processor Communication

● Inter-Processor Interrupts (IPI)
– Wake up processor at boot time
– Cause a processor to enter an interrupt handler
– Comes with challenges, such as deadlocks

● Shared Memory
– Kernel memory will generally be mapped 

identically when the kernel executes on 
processors

– Memory is therefore shared, and can be read or 
written from any processor

– Requires consistency and synchronization model
– Atomic operations, higher level primitives, etc.



Expression of Parallelism

● Kernel will run on multiple processors
– Most kernels have a notion of threads similar to 

user application threads
– Multiple execution contexts in a single kernel 

address space
– Threads will execute on only one CPU at a time
– All execution in a thread is serialized with 

respect to itself
– Most systems support migration of threads 

between processors
– When to migrate is a design choice affecting 

load balancing and synchronization



Data Consistency

● Some kernel data structures will be accessed 
from more than one thread at a time
– Will become corrupted unless access is 

synchronized
– “Race Conditions”

● Low level primitives are usually mapped into 
higher level programming services
– From atomic operations and IPIs
– To mutexes, semaphores, signals, locks, ...
– Lockless queues and other lockless structures

● Choice of model is very important
– Affects performance and complexity



Data Consistency:
Giant Lock Kernels

● Giant Lock Kernels (FreeBSD 3.x, 4.x)
– Easiest way to get a UP system to run on MP 

hardware
– Restore the assumption that the kernel runs on a 

single CPU at a time
– Processors spin if waiting for the kernel
– User processes or threads may run on more than 

one CPU at a time
– Only one can enter the kernel at a time

● Easy to implement, but lots of “contention”
– Synchronization costs are high
– CPU is burned waiting for the kernel



Context Switching in a
Giant-Locked Kernel
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The Problem: Giant Contention

● Contention in a Giant lock kernel occurs 
when events on multiple CPUs compete to 
enter the kernel
– User threads performing system calls
– Interrupt or timer driver kernel activity

● Occurs for workloads using kernel services
– File system activity
– Network activity
– Misc. I/O activity
– Inter-Process Communication (IPC)
– Scheduler and context switches

● Also affects UP by limiting preemption



Addressing Contention:
Fine-Grained Locking

● Decompose the Giant lock into a series of 
smaller locks that contend less
– Typically over “code” or “data”
– E.g., scheduler lock permits user context 

switching without waiting on the file system
– Details vary greatly by OS

● Iterative approach
– Typically begin with scheduler lock
– Dependency locking such as memory allocation
– Some high level subsystem locks
– Then data-based locking
– Drive granularity based on observed contention



Context Switching in a
Finely Locked Kernel
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FreeBSD SMPng Project

● SMPng work began in 2001
– Present in FreeBSD 5.x, 6.x

● Several architectural goals
– Adopt more threaded architecture

● Threads represent possible parallelism
● Permit interrupts to execute as threads

– Introduce various synchronization primitives
● Mutexes, SX locks, rw locks, semaphores, CV's

– Iteratively lock subsystems and slide Giant off 
the kernel

● Start with common dependencies
– Synchronization, scheduling, memory allocation, 

timer events, ...



FreeBSD Kernel

● Several million lines of code
● Many complex subsystems

– Memory allocation, VM, VFS, network stack, 
System V IPC, POSIX IPC, ...

● FreeBSD 5.x
– Most major subsystems except VFS and some 

drivers execute Giant-free
– Some network protocols require Giant

● FreeBSD 6.x
– VFS also executes Giant-free, although most file 

systems are not



Network Stack Components

● Over 400,000 lines of code
– Excluding distributed file systems and device 

drivers
● Several significant components

– “mbuf” memory allocator
– Network device drivers
– Net* protocols layer

● Includes IPv4, IPv6, IPX, EtherTalk, ATM
– Sockets and socket buffers
– Netgraph extension framework



FreeBSD Network Stack
Components
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Sample Data Flow
TCP Send and Receive

kern_send()

sosend()
sbappend()

tcp_send()
tcp_output()
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ether_input()ether_output()
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kern_recv()

System call
and socket
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IP

TCP



Network Stack Threading
UDP Transmit

netblast

em0 ithread

em_start()

send()
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send()



Network Stack Threading
UDP Receive

netreceive
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Network Stack Concerns

● Overhead: Per-packet costs
– Network stacks may process millions of PPS
– Small costs add up quickly if per-packet

● Ordering
– TCP is very sensitive to mis-ordering, due to fast 

retransmit behavior
● Optimizations may conflict

– Optimizing for latency may damage throughput, 
and vice versa

● When using locks, ordering is important
– Lock orders prevent deadlock
– Data passes in various directions through layers



Locking Strategy

● Lock data structures
– Don't use finer locks than required by UNIX API
– I.e., parallel send and receive on the same 

socket is useful, but not parallel send on the 
same socket

– Lock references to in-flight packets, not packets 
themselves

● Lock orders
– Protocol drives most inter-layer activity
– Acquire protocol locks before driver locks
– Acquire protocol locks before socket locks



Network Stack Parallelism

● Network stack was already threaded in 4.x
– 5.x/6.x add ithreads

● Assignment of work to threads
– Threads involved are typically user threads, 

netisr, and ithreads
– Work split over many threads for receive
– On transmit, work tends to occur in one thread
– Opportunities for parallelism in receive are 

greater than in transmit for a single user thread



Approach to Increasing 
Parallelism

● Starting point
– Assume a Giant-free network stack
– Select an interesting workload
– What are remaining source of contention?
– Where is CPU-intensive activity serialized in a 

single thread – i.e., unbalanced CPU use?
● Identify natural boundaries in processing

– Protocol hand-offs, layer hand-offs, etc
– Carefully consider ordering considerations

● Weigh trade-offs
– Context switches are expensive
– Locks can be expensive



Challenge: Mitigating Locking 
Overhead

● Amortize cost of locking
– Avoid multiple lock operations where possible
– Amortize cost of locking over multiple packets

● Coalesce/reduce number of locks
– Excessive granularity will increase overhead
– Combining across layers can avoid lock 

operations necessitated by to lock order
● Serialization “by thread”

– Execution of threads is serialized
● Serialization “by CPU”

– Use of per-CPU data structures and 
pinning/critical sections



Challenge: Maintaining 
Ordering

● Ordering of packets is critical to performance
– TCP will misinterpret reordering as requiring fast 

retransmit
● Ordering constraints must be maintained 

across dispatch from multiple sources
– I.e., packets sourced from a single network 

interface should be processed “in order”
● Carefully select an ordering

– “Source ordering” is used widely in the stack
– Weakening ordering can improve performance
– Some forms of parallelism maintain ordering 

more easily than others



Status of SMPng Network Stack

● FreeBSD 5.x and 6.x largely run the network 
stack without Giant
– Some less mainstream components still need it

● From “Make it work” to “Make it work fast!”
– Many workloads show significant improvements: 

databases, multi-thread/process TCP use, ...
– Cost of locking hampers per-packet performance 

for specific workloads: forwarding/bridging PPS
– UP performance sometimes sub-optimal
– Of course, 4.x is the gold standard...

● Active work on performance measurement 
and optimization currently



Summary

● A lightning fast tour of MP
– Multi-processor system architectures
– Operating system interactions with MP
– SMPng architecture and primitives

● And the network stack on MP
– The FreeBSD network stack
– Changes made to the network stack to the 

network stack to allow it to run multi-threaded
– Optimization concerns including locking cost and 

increasing parallelism
– Concerns such as packet ordering



Conclusion

● SMPng is present in FreeBSD 5.x, 6.x
– 5.3-RELEASE the first release with Giant off the 

network stack by default
– Upcoming 5.4-RELEASE includes substantial 

optimizations, stability improvements, ...
– 6.x will include substantial optimizations, VFS, ... 

● Some URLs:

http://www.FreeBSD.org/
http://www.FreeBSD.org/projects/netperf/
http://www.watson.org/~robert/freebsd/netperf/


