FreeBSD SMPng Project
SMP Network Stack

Robert Watson
FreeBSD Core Team

rwatson(@FreeBSD.org

Principal Research Scientist
McAfee Research (?)
rwatson(@nailabs.com (?)

I Introduction

- Symmetric Multi-Processing (SMP)

* Background
I - Strategies for SMP-capable operating systems

e SMPng
- FreeBSD 3.x/4.x SMP
- SMPng architecture

* Network Stack

— Architecture
- Synchronization approaches
- Optimization approaches

I Multi-Processing (MP) and
I Symmetric Multi-Processing (SMP)

- More than one general purpose processor
- Running the same primary system OS
- Increase available CPU capacity sharing
memory/lO resources
* “Symmetric”
- Refers to memory performance and caching
- In contrast to NUMA
* Non-Uniform Memory Access
* In practice, the world is complicated

- Amdoe4 NUMA, dual core, etc.
— Intel HTT, dual core, etc.

I * |nterested in “mostly” SMP

Simplified SMP Diagram
Intel Quad Xeon

Simplified NUMA Diagram
Quad AMD Opteron

Not SMPng: Graphics
Processing Units (GPUs)

I Not SMPng: Loosely Connected
I Computation Clusters

Interconnect Switch

What is shared in an
SMP System?

Shared Not Shared
System memory CPU (register context, TLB, ...)
PCI buses Cache
I/0O channels Local APIC timer

* Sources of asymmetry

- Hyper-threading (HTT): physical CPU cores
share computation resources and caches

- Non-Uniform Memory Access (NUMA): different
CPUs may access memory at different speeds

I What is an MP-Capable OS?

correctly on MP systems
- This could mean a lot of different things to a lot
of different people
— Usually implies it is able to utilize >1 CPU
e Common approach is Single System Image
- “Look like a single-processor system”
- But be faster
e Other models are possible
- Most carefully select variables to degrade
- Weak memory models, message passing, ...

I * An OS is MP-capable if it is able to operate

I OS Approach:
I Single System Image (SSI)

I * To the extent possible, maintain the

appearance of a single-processor system
- Only with more CPU power

* Maintain current UNIX process model
- Offer parallelism between user processes
— Use threads as expression of single process
parallelism
- Requires minimal changes to applications yet
offer significant performance benefit

* Because the APIs and services weren't
designed for MP, has some challenges

I Definition of Success

- Why else buy more CPUs?
- However, performance is a nebulous concept
- Very specific to workload
* “Speed up’
- Measurement of workload performance as
number of CPUs increase
— Ratio of score on N processors to score on 1

* Two goals for the OS
- Don't get in the way of application speed-up
— Facilitate application speed-up

I * Goal is performance

Transactions/Second

“Speed-Up”

Speed-Up: MySQL Select
Query Micro-Benchmark

40000
35000
30000
25000
20000
15000
10000
5000
0

|

nl

[] Idealized

[Predicted
linear from

| | Measured

UP SM SM SM SM
P-1 P2 P-3 P-4

Configuration

* “|dealized”
performance

* Not realistic

- OS + application
synchronization
overhead

- Limits on workload
parallelism

— Contention on
shared resources,
such as I/O + bus

I Developing an SMP

I UNIX System
* Two easy steps
I - Make it run
- Make it run fast

* Well, maybe a little more complicated
- Start with the kernel
- Then work on the applications
- Then repeat until done

I Issues relating to MP for UNIX
I Operating Systems: Kernel

Bootstrapping

Inter-processor communication
Expression of parallelism

Data structure consistency
Programming models
Resource management
Scheduling work

Performance

I Issues relating to MP for UNIX
I Operating Systems: Apps

- OS must provide primitives to support parallel

execution
* Processes, threads

- OS may do little, some, or lots of the work
* Network stack
* File system

- An MP-capable and MP-optimized thread library
IS very important
* System libraries and services may need a lot
of work to work well with threads

I * Application must be able use parallelism

I Bootstrapping

* The boot strap processor (BSP) starts up like
any UP system

* The kernel “discovers” other CPUs

* Once sufficiently initialized, the kernel starts
the additional processors (APs)

I * Not all that interesting

I Inter-Processor Communication

- Wake up processor at boot time
— Cause a processor to enter an interrupt handler
- Comes with challenges, such as deadlocks

* Shared Memory

- Kernel memory will generally be mapped
identically when the kernel executes on
processors

- Memory is therefore shared, and can be read or
written from any processor

- Requires consistency and synchronization model

— Atomic operations, higher level primitives, etc.

I * |nter-Processor Interrupts (IP1)

I Expression of Parallelism

- Most kernels have a notion of threads similar to
user application threads

— Multiple execution contexts in a single kernel
address space

— Threads will execute on only one CPU at a time

— All execution in a thread is serialized with
respect to itself

- Most systems support migration of threads
between processors

- When to migrate is a design choice affecting
load balancing and synchronization

I * Kernel will run on multiple processors

I Data Consistency

from more than one thread at a time

— Will become corrupted unless access is
synchronized

- “Race Conditions”

* Low level primitives are usually mapped into
higher level programming services
- From atomic operations and IPls

- To mutexes, semaphores, signals, locks, ...
- Lockless queues and other lockless structures

* Choice of model is very important
- Affects performance and complexity

I e Some kernel data structures will be accessed

I Data Consistency:

I Giant Lock Kernels
* Giant Lock Kernels (FreeBSD 3.x, 4.x)
I - Easiest way to get a UP system to run on MP
hardware

- Restore the assumption that the kernel runs on a
single CPU at a time

- Processors spin if waiting for the kernel

— User processes or threads may run on more than
one CPU at a time

- Only one can enter the kernel at a time

* Easy to implement, but lots of “contention”

- Synchronization costs are high
- CPU is burned waiting for the kernel

I Context Switching in a

I Giant-Locked Kernel

Sleep

read() on I/O

I/O
completes

E

¢

Giant
acquired

I CPUO

read()

returns

E—»

CPUs spinning waiting
for Giant to be released
by the other CPU

CPU1 T ﬁ
Giant socket()
socket() acquired returns

B Exccuting in kernel —» Running in user space
= Waiting on Giant —p |[dle

I The Problem: Giant Contention

e Contention in a Giant lock kernel occurs
I when events on multiple CPUs compete to

enter the kernel
— User threads performing system calls
— Interrupt or timer driver kernel activity

* Occurs for workloads using kernel services
- File system activity
- Network activity
- Misc. I/O activity
— Inter-Process Communication (IPC)
- Scheduler and context switches

* Also affects UP by limiting preemption

I Addressing Contention:
| Fine-Grained Locking

smaller locks that contend less
- Typically over “code” or “data”
- E.g., scheduler lock permits user context
switching without waiting on the file system
- Details vary greatly by OS

* |terative approach
— Typically begin with scheduler lock
- Dependency locking such as memory allocation
- Some high level subsystem locks
- Then data-based locking
— Drive granularity based on observed contention

I * Decompose the Giant lock into a series of

I CPUO

CPUI

Context Switching in a
Finely Locked Kernel

read()

Sleep
on I/O

I/O
completes

read()

returns

send()

Socket buffer mutex
briefly in contention

————— —— b
_—

Mutex
acquired
socket() Wait on
socket() returns send() mutex
B Exccuting in kernel —» Running in user space
= Waiting on mutex —» [dle

I FreeBSD SMPng Project

e SMPng work began in 2001
I - Present in FreeBSD 5.x, 6.x

* Several architectural goals

— Adopt more threaded architecture
* Threads represent possible parallelism
* Permit interrupts to execute as threads

— Introduce various synchronization primitives
* Mutexes, SX locks, rw locks, semaphores, CV's

— lteratively lock subsystems and slide Giant off
the kernel

e Start with common dependencies

- Synchronization, scheduling, memory allocation,
timer events, ...

FreeBSD Kernel

e Several million lines of code

* Many complex subsystems

- Memory allocation, VM, VFS, network stack,
System V IPC, POSIX IPC, ...

* FreeBSD 5.x

- Most major subsystems except VFS and some
drivers execute Giant-free
- Some network protocols require Giant

* FreeBSD 6.x

- VFS also executes Giant-free, although most file
systems are not

I Network Stack Components

* Over 400,000 lines of code

I - Excluding distributed file systems and device
drivers

* Several significant components
- “mbuf” memory allocator
- Network device drivers

- Net* protocols layer
* Includes IPv4, IPv6, IPX, EtherTalk, ATM

— Sockets and socket buffers
- Netgraph extension framework

FreeBSD Network Stack
Components

Sample Data Flow
TCP Send and Receive

System call
and socket

TCP

[P

Link Layer

Network Stack Threading

netblast

emO 1thread

UDP Transmit

sosend() udp output()
send(-
®
ip_output() em_start()
em_intr()
preempts

em_intr()
returns

em clean_transmit_intr()

Network Stack Threading
UDP Receive

_ netreceive
soreceive() wakes up
netreceive ' recv()
recv() o looks udp input() returms
netreceive
schednetisr() swi_net()
netisr *-T_T
em_intr() .. sbappend()
preempts ip_input() sowakeup()
em0 ithread H
em_intr()
3 returns
idle y o

em_process_receive interrupts()

ether input()

I Network Stack Concerns

- Network stacks may process millions of PPS
- Small costs add up quickly if per-packet
* Ordering
- TCP is very sensitive to mis-ordering, due to fast
retransmit behavior
* Optimizations may conflict
- Optimizing for latency may damage throughput,
and vice versa
* When using locks, ordering is important
— Lock orders prevent deadlock
— Data passes in various directions through layers

I * Overhead: Per-packet costs

I Locking Strategy

- Don't use finer locks than required by UNIX API

- |.e., parallel send and receive on the same
socket is useful, but not parallel send on the
same socket

- Lock references to in-flight packets, not packets
themselves

* Lock orders
— Protocol drives most inter-layer activity

— Acquire protocol locks before driver locks
— Acquire protocol locks before socket locks

I * |Lock data structures

I Network Stack Parallelism

- 5.x/6.x add ithreads

* Assignment of work to threads
— Threads involved are typically user threads,
netisr, and ithreads
- Work split over many threads for receive
- On transmit, work tends to occur in one thread
— Opportunities for parallelism in receive are
greater than in transmit for a single user thread

I * Network stack was already threaded in 4.x

I Approach to Increasing
| Parallelism

- Assume a Giant-free network stack

- Select an interesting workload

- What are remaining source of contention?

- Where is CPU-intensive activity serialized in a
single thread — i.e., unbalanced CPU use?

* |dentify natural boundaries in processing
- Protocol hand-offs, layer hand-offs, etc
— Carefully consider ordering considerations
* Weigh trade-offs
— Context switches are expensive
- Locks can be expensive

I e Starting point

I Challenge: Mitigating Locking
I Overhead

* Amortize cost of locking
I — Avoid multiple lock operations where possible
— Amortize cost of locking over multiple packets
* Coalesce/reduce number of locks
— Excessive granularity will increase overhead
- Combining across layers can avoid lock
operations necessitated by to lock order
* Serialization “by thread”
— Execution of threads is serialized

* Serialization "by CPU"

- Use of per-CPU data structures and
pinning/critical sections

I Challenge: Maintaining
I Ordering

* Ordering of packets is critical to performance
I — TCP will misinterpret reordering as requiring fast
retransmit
* Ordering constraints must be maintained

across dispatch from multiple sources
- |l.e., packets sourced from a single network
iInterface should be processed “in order”

* Carefully select an ordering
- “Source ordering” is used widely in the stack
- Weakening ordering can improve performance
- Some forms of parallelism maintain ordering
more easily than others

Status of SMPng Network Stack

* FreeBSD 5.x and 6.x largely run the network
stack without Giant
- Some less mainstream components still need it
* From “Make it work” to “Make it work fast!”
- Many workloads show significant improvements:
databases, multi-thread/process TCP use, ...
- Cost of locking hampers per-packet performance
for specific workloads: forwarding/bridging PPS
- UP performance sometimes sub-optimal
- Of course, 4.x is the gold standard...

* Active work on performance measurement
and optimization currently

I Summary

* A lightning fast tour of MP

I — Multi-processor system architectures
— Operating system interactions with MP
- SMPng architecture and primitives

* And the network stack on MP
- The FreeBSD network stack
- Changes made to the network stack to the
network stack to allow it to run multi-threaded
- Optimization concerns including locking cost and
Increasing parallelism
- Concerns such as packet ordering

I Conclusion

- 5.3-RELEASE the first release with Giant off the
network stack by default
- Upcoming 5.4-RELEASE includes substantial
optimizations, stability improvements, ...
- 6.x will include substantial optimizations, VFS, ...
* Some URLs:

I * SMPng is present in FreeBSD 5.x, 6.x

nttp://www.FreeBSD.org/
nttp://www.FreeBSD.org/projects/netpert/
nttp://www.watson.org/~robert/freebsd/netperf/

