Author: Chris Tchou

Faculty Advisor: Paul Heckbert

http://www.watson.org/~tesla/shadows

Introduction: Shadows add a sense of depth and realism to computer graphics, but are often too expensive to compute. I investigate two different shadow algorithms that lend themselves to real-time graphics: the Shadow Volume/Stencil Buffer algorithm and the Projected Texture algorithm.

Shadow Volume/Stencil Buffer algorithm:

To create the shadow of an object (like the tetrahedron illustrated at right)

1) From the viewpoint of the light source, no shadows are visible. All points not visible from the light source must be in shadow.

2) To find the points behind the tetrahedron from the view of the light, first find the silhouette of the tetrahedron.

3) This is the same silhouette viewed from the camera.

4) Project the silhouette points in a line away from the light.

5) Define the faces of the shadow volume between these lines.

6) Draw the back faces of the shadow volume in one color (yellow)

7) Draw the front faces of the shadow volume in another (blue). Note that shadowed points are now colored by the front face, but not the back face (and therefore are blue).

8) To achieve the same effect without actually drawing colors, we use the stencil buffer. Draw back faces in color ‘+1’, and front faces in color ‘-1’ on the stencil buffer. Where the total is negative, that pixel is in shadow. Set the stencil to allow drawing only to negative points, and then re-render the scene with the light off.

Texture Projection algorithm:

We maintain a shadow texture, which is simply a rendering of the scene from the viewpoint of the light, with all the objects drawn in black. Initially, the shadow texture is empty. For each object, in order of distance from the light source,

1) Draw the object in the scene, using the shadow texture.

2) Draw the object in the shadow texture, in black.

In this way, we are ‘projecting’ the shadow of the object onto every object behind it, much like a slide projector projects a picture onto a wall.

Relative Performance:

There are two major factors that affect the speed of these algorithms: the size of the polygons drawn, and the number of polygons in the scene (see the graphs to the left). Two primitives were used as the basis for testing; a torus and a sierpinski tetrahedron (see illustrations below).

Rendering Time vs. Polygon Size:

The Shadow Volume algorithm draws many large shadow volume faces, and is thus heavily dependent on the scale at which they are drawn. Though the render time for small polygons is relatively cheap, the cost grows quickly as the size increases.

The Projected Texture algorithm, by comparison, draws each object exactly twice, once in the shadow texture and once in the screen, and is therefore less dependent on the polygon size. However it also requires a large but constant amount of time to transfer the shadow texture between the renderer and the texture unit, resulting in the initial offset of 0.04 seconds.

Overall, the larger the frame to which you are rendering, the more likely it is that the Projected Texture algorithm will run more quickly than the Shadow Volume algorithm. On the hardware on which I tested it, the crossover point was around 500000 pixels/screen (approximately equivalent to a resolution of 640x480). There were no discernable differences between rendering a torus and rendering a tetrahedron with respect to screen size.

Rendering Time vs. Polygon Count:

This graph shows that both algorithms are heavily dependent not only on the number of polygons, but also on the primitive being rendered.

The Shadow Volume algorithm is very efficient when used with increasingly detailed toruses. As a we add more faces to a torus, the area of the shadow volume faces doesn’t increase much, and since shadow volume area is the main factor in rendering speed, we see the total rendering time increases slowly. This is in sharp contrast to the sierpinski tetrahedron. As we add more detail to the tetrahedron, the number of silhouette edges increases quickly, resulting in a definite increase in the shadow volume face area. A sierpinski tetrahedron can be considered a near worst case scenario for the Shadow Volume algorithm.

The Projected Texture algorithm, on the other hand, prefers the tetrahedron to the torus. This is because though the number of polygons in a tetrahedron increases with increasing detail, the total area of all the polygons actually decreases, whereas it remains approximately the same in a torus. This effect is overshadowed in the Shadow Volume algorithm by the increased shadow volume faces.

Overall, the best algorithm with respect to polygon count depends heavily on the type of primitives which you render. When dealing with an object with many low-polygon pieces, the Texture Projection algorithm wins, whereas high-polygon pieces perform better with the Stencil Buffer algorithm.

